skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lew, Alexander"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work studies the problem of predicting human intent to interact with a robot in a public environment. To facilitate research in this problem domain, we first contribute the People Approaching Robots Database (PAR-D), a new collection of datasets for intent prediction in Human-Robot Interaction. The database includes a subset of the ATC Approach Trajectory dataset [28] with augmented ground truth labels. It also includes two new datasets collected with a robot photographer on two locations of a university campus. Then, we contribute a novel human-annotated baseline for predicting intent. Our results suggest that the robot’s environment and the amount of time that a person is visible impacts human performance in this prediction task. We also provide computational baselines for intent prediction in PAR-D by comparing the performance of several machine learning models, including ones that directly model pedestrian interaction intent and others that predict motion trajectories as an intermediary step. From these models, we find that trajectory prediction seems useful for inferring intent to interact with a robot in a public environment. 
    more » « less
    Free, publicly-accessible full text available November 4, 2025
  2. Deploying robots in-the-wild is critical for studying human-robot interaction, since human behavior varies between lab settings and public settings. Though robots that have been used in-the-wild exist, many of these robots are proprietary, expensive, or unavailable. We introduce Shutter, a low-cost, flexible social robot platform for in-the-wild experiments on human-robot interaction. Our demonstration will include a Shutter robot, which consists of a 4-DOF arm with a face screen, and a Kinect sensor. We will demonstrate two different interactions with Shutter: a photo-taking interaction and an embodied explanations interaction. Both interactions have been publicly deployed on the Shutter system. 
    more » « less
  3. Hicks, Michael (Ed.)
    This article presents GenSQL, a probabilistic programming system for querying probabilistic generative models of database tables. By augmenting SQL with only a few key primitives for querying probabilistic models, GenSQL enables complex Bayesian inference workflows to be concisely implemented. GenSQL’s query planner rests on a unified programmatic interface for interacting with probabilistic models of tabular data, which makes it possible to use models written in a variety of probabilistic programming languages that are tailored to specific workflows. Probabilistic models may be automatically learned via probabilistic program synthesis, hand-designed, or a combination of both. GenSQL is formalized using a novel type system and denotational semantics, which together enable us to establish proofs that precisely characterize its soundness guarantees. We evaluate our system on two case real-world studies—an anomaly detection in clinical trials and conditional synthetic data generation for a virtual wet lab—and show that GenSQL more accurately captures the complexity of the data as compared to common baselines. We also show that the declarative syntax in GenSQL is more concise and less error-prone as compared to several alternatives. Finally, GenSQL delivers a 1.7-6.8x speedup compared to its closest competitor on a representative benchmark set and runs in comparable time to hand-written code, in part due to its reusable optimizations and code specialization. 
    more » « less
  4. We study two approaches for predicting an appropriate pose for a robot to take part in group formations typical of social human conversations subject to the physical layout of the surrounding environment. One method is model-based and explicitly encodes key geometric aspects of conversational formations. The other method is data-driven. It implicitly models key properties of spatial arrangements using graph neural networks and an adversarial training regimen. We evaluate the proposed approaches through quantitative metrics designed for this problem domain and via a human experiment. Our results suggest that the proposed methods are effective at reasoning about the environment layout and conversational group formations. They can also be used repeatedly to simulate conversational spatial arrangements despite being designed to output a single pose at a time. However, the methods showed different strengths. For example, the geometric approach was more successful at avoiding poses generated in nonfree areas of the environment, but the data-driven method was better at capturing the variability of conversational spatial formations. We discuss ways to address open challenges for the pose generation problem and other interesting avenues for future work. 
    more » « less
  5. One hallmark of human reasoning is that we can bring to bear a diverse web of common-sense knowledge in any situation. The vastness of our knowledge poses a challenge for the practical implementation of reasoning systems as well as for our cognitive theories – how do people represent their common-sense knowledge? On the one hand, our best models of sophisticated reasoning are top-down, making use primarily of symbolically-encoded knowledge. On the other, much of our understanding of the statistical properties of our environment may arise in a bottom-up fashion, for example through asso- ciationist learning mechanisms. Indeed, recent advances in AI have enabled the development of billion-parameter language models that can scour for patterns in gigabytes of text from the web, picking up a surprising amount of common-sense knowledge along the way—but they fail to learn the structure of coherent reasoning. We propose combining these approaches, by embedding language-model-backed primitives into a state- of-the-art probabilistic programming language (PPL). On two open-ended reasoning tasks, we show that our PPL models with neural knowledge components characterize the distribution of human responses more accurately than the neural language models alone, raising interesting questions about how people might use language as an interface to common-sense knowledge, and suggesting that building probabilistic models with neural language-model components may be a promising approach for more human-like AI. 
    more » « less